Skip to main content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

Research Data Management

What is Research Data?

Research data is the information, records and files that are collected or used during the research process. Examples of research data may include notebooks, recordings, survey forms, specimens and other samples, photographs or computer code required to reconstruct meaningful information.

Research data does not include references, literature reviews or the end product of the research undertaken such as a published article.

Why manage research data?

Grant and funding bodies require research data to be managed through its lifecycle. You may need to provide information about the data or the data itself, for example some journals require it or you may want to patent an invention.  

Creating a research data management plan at the start of the research project is the simplest way to save time in the collection, description, analysis, and reuse of the data. Effective management and documentation of research data means you can verify your research results, replicate research and provide access to data.

Research Data Lifecycle

Adapted original source: The University of California, Santa Cruz, Data Management LibGuide, Research Data Management Lifecycle, diagram, viewed 15th September 2015 <>  

FAIR Data Principles

The FAIR Data Principles (Findable, Accessible, Interoperable, Reusable) were drafted at a Lorentz Center workshop in Leiden in the Netherlands in 2015, and have since received worldwide recognition by various organisations including FORCE11, National Institutes of Health (NIH) and the European Commission as a useful framework for thinking about sharing data in a way that will enable maximum use and reuse. They are a way of thinking about getting the most out of your research data, and its place in the wider researcher community. 



Can your data be found if someone is looking for it? Does it have a DOI or a Handle? Does it have rich metadata? Is it discoverable through a research portal, or a repository? 


Does your data utliise a standardised protocol? Your data does not necessarily have to be "open" - there are sometimes good reasons why data cannot be made open, i.e. privacy concerns, national security or commercial interests - but if it is not there should be clarity and transparency around the conditions governing access and reuse.


To be interoperable the data will need to use community agreed formats, language and vocabularies. Will someone who finds your data be able to meaningfully reuse it, and build or reproduce your work? The metadata you use will also need to use a community agreed standards and vocabularies, and contain links to related information using identifiers.


Reusable data should maintain its initial richness. For example, it should not be diminished for the purpose of explaining the findings in one particular publication. It needs a clear machine readable licence and provenance information on how the data was formed. It should also have discipline-specific data and metadata standards to give it rich contextual information that will allow for reuse.