ABSTRACT: Daily administration of low-dose aspirin has proved to be beneficial in preventing recurrent cardiovascular events. However, the role of aspirin for primary prevention in patients with no overt cardiovascular disease is more controversial. In fact, in lower risk patients, the modest benefit in reducing serious vascular events can be offset by the increased risk of bleeding, including intracranial and gastrointestinal hemorrhage. Diabetes mellitus has been associated with a substantially increased risk of both first and recurrent atherothrombotic events, which makes aspirin therapy of potential value in these subjects. Moving from general aspects of aspirin pharmacology and specific issues in diabetes mellitus, this article reviews the literature on the topic of aspirin for primary prevention in general, and in subjects with diabetes mellitus in particular, to culminate with arguments pro and con and a practical risk-based algorithm for aspirin initiation in daily practice.

Primary prevention aims to avert the onset of cardiovascular disease (CVD) by targeting its natural causes and risk factors. At a different level, secondary prevention includes strategies and therapies that address preclinical or clinical evidence of CVD progression. Both primary and secondary prevention of atherothrombosis—a key mechanism of nonfatal myocardial infarction (MI), ischemic stroke, and death—involves the use of pharmacologic agents that counteract the process of clot formation. Acetylsalicylic acid, also known simply as aspirin, has been manufactured and marketed since 1899, but it took ≈60 years to appreciate its antithrombotic potential as an antiplatelet agent. The value of aspirin for primary CVD prevention is controversial because of concerns that increased bleeding may offset the overall modest benefits of the drug in adults with no overt manifestation of atherothrombosis. In contrast, secondary prevention is a setting where the benefits of aspirin have been repeatedly and convincingly demonstrated to outweigh the risk of bleeding. This benefit notwithstanding, the incremental merit and possible detrimental effect of aspirin, combined with agents targeting different pathways of platelet activation (ie, P2Y₁₂ inhibitors), have recently prompted a research line that investigates the net benefit of aspirin-free strategies after an acute coronary syndrome or percutaneous coronary intervention.

The individual likelihood of life-long cardiovascular events may be a significant modifier of the net benefit of aspirin in both the primary and secondary prevention settings. Diabetes mellitus (DM) has been associated with an increased risk of both first and recurrent atherothrombotic events. The total number of people with DM is projected to rise from 171 million in 2000 to 366 million in 2030, which poses substantial and urgent questions on how to impact the anticipated additional burden of new onset or recurrent CVD. In this article, we revisit the topic of aspirin for CVD.
prevention in patients with DM. Because the benefit of aspirin for secondary prevention in DM (for which we refer elsewhere) is currently undisputed, we will focus on the larger area of controversy (ie, primary CVD prevention). In particular, moving from general aspects of aspirin pharmacology and specific issues in DM, this article reviews aspirin for primary prevention in general, and in subjects with DM in particular, integrating considerations of noncardiovascular benefits and harms to end up with a practical risk-based algorithm for aspirin initiation in daily practice.

ASPIRIN PHARMACOLOGY AND IMPLICATIONS FOR ASPIRIN USE IN PATIENTS WITH DIABETES MELLITUS

Pharmacokinetics

After ingestion, immediate-release aspirin is completely and rapidly absorbed by passive diffusion across the membranes of the stomach and upper small intestine. The absorption rate depends on dosage form, presence or absence of food, and gastric pH. At variance with the uncoated form, enteric-coated aspirin is erratically absorbed by the gastrointestinal mucosa, resulting in lower bioavailability. Plasma levels peak within 30 to 40 minutes of (uncoated formulation) or 3 to 4 hours after (enteric-coated formulation) oral intake. The half-life of aspirin is only 15 to 20 minutes, but the antiplatelet effect lasts longer because of the irreversible mechanism of action, which blocks the exposed platelet for its entire lifespan (ie, 7–10 days) and therefore can only be reversed through generation of new platelets. These estimates indicate that aspirin has a rapid onset of effect but a narrow window of opportunity to inhibit circulating platelets.

Mechanism of Action

Aspirin acts by irreversibly blocking cyclooxygenase (COX) activity of the prostaglandin H synthases 1 and 2 (COX-1 and COX-2, respectively), resulting in the inhibition of thromboxane A₂ (TXA₂) and prostacyclin (PGI₂) generation (Figure 1). In chronic administration, typical low-dose regimens ranging between 75 and 100 mg will clearly exceed the minimum dose required for platelet inhibition, also addressing interindividual variability. Along the TXA₂ pathway, aspirin inhibits platelet activation and aggregation, 2 essential steps in the pathophysiology of thrombosis and MI. Inhibition of platelet activation at vascular injury sites has other indirect non-TXA₂-mediated consequences, such as reduced release of inflammatory cytokines, oxygen radicals, and growth factors. In contrast to TXA₂, PGI₂ is implicated in several antiatherogenic effects and vascular thromboresistance. Because low-dose aspirin has no measurable effects on COX-2- and PGI₂-mediated vascular functions, it does not increase blood pressure, impair renal function, or interfere with the antihypertensive effects of diuretics and angiotensin-converting enzyme inhibitors. However, permanent COX-1 inactivation may increase the risk of upper gastrointestinal bleeding through 2 distinct mechanisms: inhibition of TXA₂-mediated platelet aggregation and dose-dependent impairment of PGI₂-mediated cytoprotection in the gastrointestinal mucosa. The latter increases the risk of bleeding and perforation by promoting new mucosal lesions and worsening existing ones 4- to 10-fold when aspirin is used at analgesic doses. Antisecretory therapy (ie, use of proton pump inhibitors) reduces the risk of upper gastrointestinal bleeding.

Drug Interactions

Concomitant use of reversible COX-1 inhibitors (ie, nonsteroidal anti-inflammatory drugs [NSAIDs] such as ibuprofen and naproxen) exert a competitive effect on the irreversible acetylation of platelets by aspirin. This pharmacodynamic interaction does not occur with NSAIDs that have some degree of COX-2 selectivity (ie, the “coxibs”). In a large registry of patients with prior MI, the use of NSAIDs in combination with aspirin was associated with increased risk of both bleeding and thrombotic events, even after short-term treatment. Therefore, although less data are available on the clinical consequences of this drug interaction for primary prevention, the association should be tentatively avoided, particularly with ibuprofen and naproxen, and a strategy preventing gastrointestinal complications should be put in place.

Aspirin Responsiveness

Recently, much debate has taken place over the prevalence of so-called aspirin resistance, particularly in high-risk patients, such as those with DM. However, aspirin resistance (defined as the failure of aspirin to fully inactivate the platelet COX-1) is a rare or nonexistent phenomenon. The reason that the prevalence of aspirin resistance varies considerably in the literature is that it is often defined with assays that do not specifically assess COX-1 activity. In fact, although a number of assays are able to detect aspirin-induced effects, the results obtained are not all specific to the degree of COX-1 inhibition and may be affected by other platelet-signaling pathways. Moreover, the prevalence of inadequate aspirin effects may be influenced by the patient population being tested: patients with DM, who are characterized by a hyperreactive platelet phenotype, may persist with high platelet reactivity despite receiving aspirin therapy. These subjects may have complete COX-1 blockade and erroneously interpreted as having aspirin resistance because of the type of platelet function test used (ie, non-COX-1 specific). When tests that specifically assess
COX-1 activity are used, aspirin resistance is observed infrequently and more commonly attributed to drug interactions (ie, with NSAIDs) or in some cases because of impaired absorption, potentially related to enteric-coating, also known as pseudoresistance. In clinical practice, the foremost reason for the high prevalence of aspirin resistance with assays that specifically assess COX-1 activity is poor patient compliance.

Diabetic Platelets and Implications for Aspirin Use

Platelets of patients with DM appear hyperreactive, with enhanced adhesion, activation, and aggregation compared with platelets of patients without DM. A full description of mechanisms explaining why these abnormalities occur goes beyond the scope of this article but can be found elsewhere. Briefly, hyperglycemia exerts an osmotic effect, contributes to oxidative stress, induces the expression of P-selectin and other surface proteins responsible for adhesion, and activates protein kinase C, a mediator of platelet activation. In parallel, insulin deficiency promotes an increase in intracellular calcium concentrations, prompting enhanced platelet degranulation and aggregation. Insulin resistance has been associated with impaired response to antithrombotic stimuli, such as nitric oxide and PGI2. Metabolic conditions frequently associated with DM (ie, obesity, dyslipidemia, kidney disease, and enhanced systemic inflammation) are known contributors to platelet abnormalities because of augmented cytosolic calcium concentrations or endothelial dysfunction. The latter, in particular, determines disequilibrium between nitric oxide and PGI2, on the one hand, and tissue factor, on the other hand. DM platelets also more frequently express glycoproteins IIb/IIIa and typically present with upregulated P2Y12 signaling. Finally, reduced platelet lifespan and increased turnover have been described, leading to increased platelet generation and release by the bone marrow.

In view of the accelerated thrombopoiesis that characterizes DM, newly generated and hyperreactive platelets entering the circulation may have less time to be exposed to aspirin if aspirin is given once daily. In this scenario, increasing the aspirin dose has been suggested to reduce platelet aggregation and overcome aspirin resistance or pseudoresistance in some studies but not in others. Indeed, increasing the dose may lower the production of prostaglandins and increase the risk...
of adverse effects (ie, gastrointestinal and intracranial bleeding), with uncertain net benefit. The US Food and Drug Administration recently approved a new extended-release 162.5-mg aspirin formulation (Durlaza, New Haven Pharmaceuticals, Inc.) designed to provide a more stable antiplatelet effect during the 24 hours. Extended-release formulations provide a protracted period during which aspirin may inactivate platelets. However, the impact of this new therapy on CVD prophylaxis in patients with DM remains to be determined. Twice-daily administration of low aspirin doses is another option to lower the total daily number of uninhibited platelets. This approach provides an additional window of time for platelets exposure to aspirin during the 24 hours. In several pharmacodynamic studies conducted in patients with DM and coronary artery disease, twice-daily low-dose aspirin administration proved effective in determining greater platelet inhibition than once-daily administration, but the clinical implications of a modified aspirin regimen tailored to patients with DM for primary CVD prevention also remain uncertain.

Aspirin for Primary CVD Prevention: The Evidence Base

The Case for Efficacy

Between 1988 and 2014, 15 randomized clinical trials investigated the impact of aspirin for primary prevention of CVD events, (Table 1). Of these studies, 3 were conducted in healthy men and women, and 6 in subjects with CVD risk factors, 4 in subjects with documented subclinical atherosclerosis, and 2 in subjects with prothrombotic hematologic conditions. A landmark collaborative meta-analysis of individual participant data from 6 randomized trials conducted between 1988 and 2005 (including 95,000 individuals at low average risk with 3554 serious vascular events) and 16 randomized trials of secondary CVD prevention (including 17,000 individuals with 3306 vascular events) has been undertaken by the Antithrombotic Trialists’ (ATT) collaboration in 2009 (Table 1). Among trials available at that time, this meta-analysis excluded 1 trial mixing primary and secondary prevention patients with DM and 4 trials including subjects with confounding clinical conditions (ie, carotid stenosis, peripheral artery disease, polycythemia vera, and antiphospholipid antibody syndrome). In the pooled analysis of the 6 primary prevention studies included, aspirin reduced the composite of serious vascular events (a composite of vascular death, MI, or stroke) by 12%, with no significant heterogeneity across prespecified subgroups. The relative risk reduction of aspirin was similar to that of secondary prevention studies (12% vs 19%, respectively; for heterogeneity, P=0.10), but the absolute risk reduction was markedly smaller (0.07% vs 1.49%), corresponding to 1429 and 67 patients needed to treat to prevent 1 serious vascular event in primary and secondary prevention studies, respectively. Most of the aspirin benefit in primary prevention was attributable to a 23% proportional reduction in nonfatal MI, whereas no effect was noted on ischemic stroke, vascular mortality, and all-cause mortality. Some evidence revealed a difference in the aspirin effect by sex. In fact, aspirin reduced cardiovascular events in men but not in women, and it reduced stroke in women but not in men. Nevertheless, the suggestion of a sex bias must be interpreted with caution because these results were essentially driven by 1 study, were of borderline statistical significance, and were not observed in secondary prevention studies.

Since the publication of the ATT meta-analysis, 4 more randomized trials of aspirin for primary CVD prevention have been published, including POPAD (Prevention of Progression of Arterial Disease and Diabetes), JPAD (Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes), AAA (Aspirin for Asymptomatic Atherosclerosis), and the large JPPP (Japanese Primary Prevention Project). Although still targeting asymptomatic patients, these studies included somewhat higher risk individuals than those included in previous trials represented in the ATT meta-analysis because of preexisting CVD risk factors, peripheral artery disease, or both. However, none of the 4 newer trials provided conclusive evidence to support the routine use of aspirin for primary prevention of CVD (Table 1).

Seven meta-analyses were then published to update the ATT collaboration (Table 2), with only 2 of these studies including the most recent JPPP trial. In general, these meta-analyses reported a 10% to 13% relative reduction in combined serious cardiovascular events, driven by a 19% to 22% reduction in nonfatal MI and a 13% to 14% reduction in ischemic stroke. The reduction in all-cause mortality was statistically significant in some meta-analyses, but modest (5% to 6%).

The Case for Safety

In the ATT meta-analysis, aspirin numerically but nonsignificantly increased the risk of hemorrhagic stroke both in primary and secondary prevention trials (Table 2). In addition, aspirin relatively increased major gastrointestinal and other extracranial bleeding risk by 54%, with no significant heterogeneity compared with secondary prevention trials (for heterogeneity, P=0.20). All subsequent meta-analyses incorporating the newer trials confirmed that aspirin increased the risk of bleeding by 33% to 43% for hemorrhagic stroke, 55% to 69% for major bleeding, and 29% to 64% for gastrointestinal bleeding (Table 2). It is important to note that the risk of bleeding with aspirin is 5-fold higher in patients who are at higher risk
of cardiovascular events within 10 years compared with those at lower risk.54

The Case for Net Clinical Benefit

Assessing the net benefit of aspirin use in primary CVD prevention is challenging because of the difficulty of weighing the consequences of ischemic and bleeding events. A systematic review of 27 trials and meta-analyses concluded that there is “a fine balance between benefits and risks from regular aspirin use in primary prevention of CVD.”55 Indeed, in people at moderate to high risk of CVD events, the reduction in MI is closely balanced by an increase in major bleeds, prompting aspirin use in individuals who value preventing an MI substantially more than avoiding gastrointestinal bleeding. Assuming total mortality as the ideal net benefit outcome, it should be noted that calculation of absolute effects per 100,000 patient-years of follow-up suggests aspirin to finally avert 33 to 46 deaths compared with controls.55

Overall, regardless of the relative benefits of aspirin, the absolute benefits appear an order of magnitude smaller in primary than in secondary prevention trials. This finding explains why the risk of extracranial major bleeding with aspirin given for primary prevention easily offsets the observed reduction in serious ischemic events. Conversely, in secondary prevention, the trade-
Table 2. Summary of Recent Meta-Analyses of Aspirin for Primary Cardiovascular Prevention

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>ATT46</th>
<th>Bartolucci46</th>
<th>Raju47</th>
<th>Berger48</th>
<th>Seshasai49</th>
<th>Xie50</th>
<th>Raju51</th>
<th>Guirguis-Blake52,53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Patient level</td>
<td>Study level</td>
</tr>
<tr>
<td>Pooled patients</td>
<td>95,000</td>
<td>100,038</td>
<td>100,076</td>
<td>102,621</td>
<td>102,621</td>
<td>107,686</td>
<td>114,734</td>
<td>118,445</td>
</tr>
<tr>
<td>Summary measure</td>
<td>RaR (95% CI)</td>
<td>OR (95% CI)</td>
<td>RR (95% CI)</td>
<td>RR (95% CI)</td>
<td>OR (95% CI)</td>
<td>RR (95% CI)</td>
<td>RR (95% CI)</td>
<td>RR (95% CI)</td>
</tr>
<tr>
<td>Studies included</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>BDT45</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PHS51</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ETDRS52</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ACBS35</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>HOT54</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TPT55</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PPP36</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ECLAP57</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>WHS38</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CLIPS39</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>APLASA42</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>POPADAD41</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>JPAD52</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AAA43</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>JPPP44</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Follow-up</td>
<td>330,000 PY</td>
<td>NR</td>
<td>3.8–10.1 yr</td>
<td>710,053 PY</td>
<td>=700,000 PY</td>
<td>734,170 PY</td>
<td>NR</td>
<td>3.6–10.1 yr</td>
</tr>
<tr>
<td>Serious vascular events</td>
<td>0.88 (0.82–0.94)*</td>
<td>0.87 (0.80–0.93)*</td>
<td>0.88 (0.83–0.94)*</td>
<td>0.90 (0.85–0.96)*</td>
<td>0.90 (0.85–0.96)*</td>
<td>0.90 (0.85–0.95)*</td>
<td>0.89 (0.82–0.97)*</td>
<td>NR</td>
</tr>
<tr>
<td>Any MI</td>
<td>NR</td>
<td>NR</td>
<td>0.83 (0.69–1.00)*</td>
<td>0.86 (0.74–1.00)*</td>
<td>NR</td>
<td>0.86 (0.75–0.98)*</td>
<td>0.78 (0.65–0.94)*</td>
<td>NR</td>
</tr>
<tr>
<td>Fatal MI</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>1.06 (0.83–1.37)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nonfatal MI</td>
<td>0.77 (0.69–0.86)*</td>
<td>0.81 (0.67–0.99)*</td>
<td>NR</td>
<td>NR</td>
<td>0.80 (0.67–0.96)*</td>
<td>NR</td>
<td>0.80 (0.64–0.99)*</td>
<td>0.78 (0.71–0.87)*</td>
</tr>
<tr>
<td>All-cause death</td>
<td>NR</td>
<td>NR</td>
<td>0.95 (0.88–1.01)</td>
<td>0.94 (0.89–1.00)</td>
<td>0.94 (0.89–1.00)</td>
<td>0.94 (0.89–0.99)*</td>
<td>0.94 (0.89–1.00)</td>
<td>0.94 (0.89–0.99)*</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>0.97 (0.87–1.09)</td>
<td>0.96 (0.80–1.14)</td>
<td>0.96 (0.84–1.09)</td>
<td>0.99 (0.85–1.14)</td>
<td>0.99 (0.85–1.15)</td>
<td>1.04 (0.86–1.25)</td>
<td>0.95 (0.84–1.07)</td>
<td>0.94 (0.86–1.03)</td>
</tr>
<tr>
<td>Any stroke</td>
<td>0.95 (0.85–1.06)</td>
<td>0.92 (0.83–1.02)</td>
<td>NR</td>
<td>0.94 (0.84–1.06)</td>
<td>0.94 (0.84–1.06)</td>
<td>0.95 (0.87–1.05)</td>
<td>0.94 (0.84–1.06)</td>
<td>0.95 (0.85–1.06)</td>
</tr>
<tr>
<td>Hemorrhagic</td>
<td>1.32 (1.00–1.75)*</td>
<td>NR</td>
<td>1.36 (1.01–1.82)*</td>
<td>1.35 (1.01–1.81)*</td>
<td>NR</td>
<td>1.34 (1.01–1.79)*</td>
<td>1.43 (1.10–1.86)*</td>
<td>1.33 (1.03–1.71)*</td>
</tr>
<tr>
<td>Ischemic</td>
<td>0.86 (0.74–1.00)*</td>
<td>NR</td>
<td>0.86 (0.75–0.98)*</td>
<td>0.87 (0.73–1.02)</td>
<td>NR</td>
<td>0.86 (0.75–0.98)*</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>1.54 (1.30–1.82)*</td>
<td>NR</td>
<td>1.66 (1.41–1.95)*</td>
<td>1.62 (1.31–2.00)*</td>
<td>NR</td>
<td>1.55 (1.35–1.78)*</td>
<td>1.69 (1.43–1.98)*</td>
<td>NR</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>NR</td>
<td>NR</td>
<td>1.37 (1.15–1.62)*</td>
<td>1.29 (1.24–1.47)*</td>
<td>NR</td>
<td>NR</td>
<td>1.64 (1.30–2.07)*</td>
<td>1.59 (1.32–1.91)*</td>
</tr>
</tbody>
</table>

Serious vascular events were defined as the composite of myocardial infarction, stroke, or death from a vascular cause. AAA indicates Aspirin for Asymptomatic Atherosclerosis; APLASA, Antiphospholipid Antibody Acetyl-salicylic Acid; BDT, British Doctors Trial; CLIPS, Critical Leg Ischemia Prevention Study; CHD, coronary heart disease; CI, confidence interval; ECLAP, European Collaboration on Low-Dose Aspirin in Polycythemia Vera study; ETDRS, Early Treatment Diabetic Retinopathy Study; HOT, Hypertension Optimal Treatment; JPAD, Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes; JPPP, Japanese Primary Prevention Project; MI, myocardial infarction; NR, not reported; PHS, Physicians Health Study; POPADAD, Prevention of Progression of Arterial Disease and Diabetes; PPP, Primary Prevention Project; PY, patients-year; RaR, rate ratio; RR, relative risk; OR, odds ratio; TPT, Thrombosis Prevention Trial; and WHS, Women’s Health Study.

*Statistically significant.
of ischemic protection and bleeding is more favorable (ie, aspirin reduces nonfatal vascular events more than it increases major extracranial bleeding), resulting in lower mortality and substantial net benefit.

Aspirin for Cardiovascular Primary Prevention in Patients with Diabetes Mellitus

The 6 trials included in the ATT meta-analysis were population-based and did not focus specifically on patients with DM (with percentages of patients with DM ranging between 1% and 22%). In contrast, 1 older and 2 newer primary CVD prevention trials randomized only patients with DM. In ETDRS (Early Treatment Diabetic Retinopathy Study), which included 3711 patients with type I and II DM randomized to aspirin 650 mg/d or placebo, numeric but nonstatistically significant 9% and 17% reductions occurred in all-cause death and MI, respectively, consistent with studies that included mainly subjects without DM. About half of patients included in ETDRS reported a history of CVD. Unfortunately, no separate analysis was performed for truly primary and secondary prevention patients, which—adding to the high dose of aspirin used—explains why ETDRS was not included into the ATT and subsequent meta-analyses. POPADAD was a 2x2 factorial trial of aspirin 100 mg/d and antioxidant therapy versus placebo, which randomized 1276 patients with type I or type II DM and an ankle brachial pressure index of 0.99 or less but no symptomatic CVD. Compared with placebo, no difference was found in the composite of death from CVD or stroke, nonfatal MI, stroke, or amputation above the ankle for critical limb ischemia with aspirin, and no difference was found in the coprimary endpoint of deaths from CVD or stroke. Finally, JPAD included only patients with type II DM with no history of atherosclerotic disease (N=2539), randomized to low-dose aspirin (81–100 mg/d), or no aspirin. Once again, aspirin was not found to reduce the risk of the primary outcome measure (ie, fatal or nonfatal ischemic heart disease, fatal or nonfatal stroke, and peripheral arterial disease).

In the ATT meta-analysis, compared with subjects without DM, those with DM (≈4000) experienced similar nonsignificant relative reductions (12% vs 13%) and larger absolute reductions (0.24% vs 0.06% per year) for primary prevention of serious vascular events with aspirin versus controls. The larger reduction was for nonfatal MI, with little effect on stroke and no impact on mortality. Since the publication of the ATT meta-analysis, other meta-analyses have addressed primary CVD prevention in DM (Table 3). In general, these studies concluded for an 8% to 11% (mostly nonsignificant) relative reduction in serious vascular events and no effect on all-cause and cardiovascular mortality. The large confidence intervals do not exclude the potential benefit of aspirin in reducing MI and stroke, and the potential harm in increasing major bleeding. The most recent meta-analysis, which includes the 3 trials conducted specifically in patients with DM and 7 other trials in which DM patients represented a proportion of the study population, concluded that aspirin is associated with a 10% reduction in serious cardiovascular events, numeric but nonstatistically significant 16% and 14% reductions in MI and stroke, respectively, and a 2-fold nonsignificant increased risk of gastrointestinal bleeding. Notably, none of the available meta-analyses had access to sufficient patient-level data in patients with DM to consider whether the effect of aspirin differs by sex, aspirin dose, or other factors.

Current Guidelines and Consensus Documents

Numerous national and international guidelines are available on the use of aspirin for the primary prevention of CVD, with conflicting recommendations that reflect differences in selection of the evidence and timing of publication. The 2016 European Society of Cardiology (ESC) guidelines on CVD prevention do not recommend aspirin for primary prevention in patients with DM if they do not have overt CVD. This recommendation is in line with the 2013 joint guidelines of the ESC and the European Association for the Study of Diabetes. By contrast, the Working Group on Thrombosis of the ESC has issued a class IIa recommendation for aspirin use to prevent CVD events in patients at high risk of major cardiovascular events and no clear evidence of increased risk of bleeding.

The 2016 guidelines from the American Diabetes Association (ADA) recommend a risk-based approach, with aspirin endorsed as a primary prevention strategy in DM patients with a 10-year risk of cardiovascular events >10% and on a case-by-case basis in patients with an intermediate 10-year risk of 5% to 10%. This is similar to the recommendations included in a joint position statement by the ADA, the American Heart Association (AHA), and the American College of Cardiology (ACC) Foundation published in 2010 and by an updated document from the ADA and AHA published in 2015. The American College of Chest Physicians and the US Preventive Services Task Force (USPSTF) do not differentiate their recommendations for primary prevention based on the presence or absence of DM and advocate initiating low-dose aspirin based on age (ie, after 50 years). In particular, the recent statement from the USPSTF recommends aspirin in adults 50 to 59 years of age who have a ≥10% 10-year cardiovascular risk, are not at increased risk for bleeding, have a life expectancy of ≥10 years, and are willing to take low-dose aspirin daily for at least 10 years.
Considerations on Aspirin Use for Primary CVD Prevention in Diabetes Mellitus

Arguments Contra

The use of aspirin in adults without DM may increase the risk of intracranial and extracranial bleeding, principally gastrointestinal. The lack of statistical significance for these endpoints in DM meta-analyses (when reported) is likely related to the low number of events, reflecting a power issue, but in these studies the risk is numerically increased 2-fold. It should also be noted that randomized trials of aspirin for primary prevention generally excluded patients at increased risk of gastrointestinal bleeding (including those with a history of prior peptic ulcer), and elderly were underrepresented; therefore, these results might also not represent the true hazard of routine aspirin use in daily practice.

Whether patients have sufficient risk to warrant aspirin intake depends on the use of other effective strategies for CVD risk reduction, including statins,
Aspirin in Diabetes Mellitus

It may be argued that widespread adoption of evidence-based drug prevention with these other agents may make the use of aspirin futile by lowering the overall CVD risk. Finally, there may be less rationale to support a role for aspirin in actually preventing the onset and progression of CVD rather than its thrombotic complications.

Table 4. Current Guidelines and Consensus Documents Recommendations on Low-Dose Aspirin Use for Primary Prevention in Patients with Diabetes Mellitus

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 ADA/AHA/ACCF Position Statement67</td>
<td>Reasonable for adults with DM and no previous history of vascular disease who are at increased CVD risk (10-y risk of CVD events >10%) and who are not at increased risk for bleeding (based on a history of previous gastrointestinal bleeding or peptic ulcer disease or concurrent use of other medications that increase bleeding risk, such as NSAIDS or warfarin). Those adults with increased CVD risk include most men >50 years of age and women >60 years of age who have 1 or more of the following additional major risk factors: smoking, hypertension, dyslipidemia, family history of premature CVD, and albuminuria (ACCF/AHA Class IIa, LOE B) (ADA Grade C). Not recommended for CVD prevention for adults with DM at low CVD risk (men <50 years of age and women <60 years of age with no major additional CVD risk factors; 10-year CVD risk under 5%) as the potential adverse effects from bleeding offset the potential benefits (ACCF/AHA Class III, LOE C) (ADA Grade C). Might be considered for those with DM at intermediate CVD risk (younger patients with 1 or more risk factors, or older patients with no risk factors, or patients with 10-year CVD risk of 5% to 10%) until further research is available (ACCF/AHA Class IIb, LOE C) (ADA Grade E).</td>
</tr>
<tr>
<td>2012 ACCP</td>
<td>Suggested for persons ≥50 years of age without symptomatic CVD (Grade 2B).</td>
</tr>
<tr>
<td>2013 ESC/EASD guidelines on diabetes, prediabetes, and cardiovascular diseases63</td>
<td>Not recommended in patients with DM at low CVD risk (Class III, LOE A). May be considered in high-risk patients with DM on an individual basis (Class IIb, LOE C).</td>
</tr>
<tr>
<td>2014 ESC Working Group on Thrombosis64</td>
<td>Consider in both sexes at a level of risk of major cardiovascular events (death, MI, and stroke) >2 per 100 subject-years, provided they have no clear evidence of increased risk of bleeding (gastrointestinal bleeding or peptic ulcer disease, no concurrent use of other medications that increase bleeding risk) (Class IIa, LOE B).</td>
</tr>
<tr>
<td>2015 AHA/ADA Scientific Statement68</td>
<td>Reasonable among those with a 10-year CVD risk of at least 10% and without an increased risk of bleeding (ACC/AHA Class IIa, LOE B) (ADA Grade C). Reasonable in adults with DM at intermediate risk (10-year CVD risk, 5% to 10%) (ACC/AHA Class IIb, LOE C) (ADA Grade E).</td>
</tr>
<tr>
<td>2016 ESC and other Societies on CVD Prevention in Clinical Practice guidelines1</td>
<td>Not recommended for people with DM who do not have CVD (Class III, LOE A).</td>
</tr>
<tr>
<td>2016 ADA guidelines66</td>
<td>Consider in those with type I or type II DM who are at increased CVD risk (10-year risk >10%). This includes most men or women with DM ≥50 years of age who have at least 1 additional major risk factor (family history of premature atherosclerotic CVD, hypertension, smoking, dyslipidemia, or albuminuria) and are not at increased risk of bleeding (Grade C). Not recommended for adults with DM at low atherosclerotic CVD risk (10-year atherosclerotic CVD risk <5%), such as in men or women with DM aged <50 yr with no major additional atherosclerotic CVD risk factors, as the potential adverse effects from bleeding likely offset the potential benefits. (Grade C) Clinical judgment required in patients with DM <50 years of age with multiple other risk factors (ie, 10-year risk 5% to 10%) (Grade E).</td>
</tr>
<tr>
<td>2016 USPSTF Recommendation statement69</td>
<td>Initiate in adults 50 to 59 years of age with a ≥10% 10-year CVD risk (Grade B). Individual judgment in adults 60 to 69 years of age with a ≥10% 10-year CVD risk (Grade C). No recommendation in adults ≥70 years of age (Grade I: insufficient evidence).</td>
</tr>
</tbody>
</table>

ACCP indicates American College of Chest Physicians; ADA, American Diabetes Association; CVD, cardiovascular disease; DM, diabetes mellitus; EASD, European Association for the Study of Diabetes; ESC, European Society of Cardiology; LOE, level of evidence; MI, myocardial infarction; NSAIDS, nonsteroidal anti-inflammatory drugs; TIA, transient ischemic attack; and USPSTF, US Preventive Services Task Force.
Arguments Pro

Low-dose aspirin has been consistently found to reduce the risk of serious ischemic events and nonfatal MI in patients without DM with any overt CVD, although this benefit is generally small. In DM, evidence of the efficacy and safety of aspirin is lacking or, at best, inconclusive, with the exception of one meta-analysis suggesting a 10% reduction in serious vascular events. Indeed, almost all the available meta-analyses indicate that existing trials of aspirin in DM are still limited by small patient numbers and low event rates. On this background, one may speculate that aspirin probably exerts a modest reduction in the risk of CVD, but the limited amount of data specific to DM patients precludes a firm estimate of the effect size. As far as the risk of bleeding is concerned, with the exception of intracranial bleeding, a nonfatal major bleed is likely preferable to a nonfatal MI or stroke.

It is important to note that aspirin has been associated with beneficial noncardiovascular effects, including prevention of venous thromboembolism, chemoprevention of colorectal (and other) cancer, and neuroprotection with reduced risk of dementia. In a recent meta-analysis of primary prevention trials from the USPSTF, the benefits of aspirin on cancer mortality and incidence were not clearly established. However, evidence from pooled CVD primary and secondary prevention trials suggests that aspirin reduces the incidence of colorectal cancer and mortality ≈10 years after initiation. The follow-up of primary CVD prevention trials of aspirin is too short to display meaningful effects on the incidence and related mortality of cancer. How low-dose aspirin is eventually implicated in chemoprevention, with its effects limited to COX-1 inactivation, is difficult to reconcile but may suggest a platelet-mediated process in the initiation, for example, of colorectal carcinogenesis. In contrast, the effect of low-dose aspirin on neuroprotection and prevention of cognitive decline could be explained by inhibition of the proinflammatory effects of platelets due to complex formation with circulating leukocytes and secretion of soluble factors, 2 mechanisms at play even in the absence of COX-2 activity. These platelet-mediated processes may be particularly enhanced in patients with DM. If these noncardiovascular benefits of low-dose aspirin are firmly established by future studies, then the bar for aspirin use in primary prevention will need to be lowered.

Risk Stratification

In patients with no overt CVD, the estimated risk of future events (ie, as reflected by the risk estimator provided by the AHA and the ACC) is low (Figure 2). However, the absolute decrease in events depends on the underlying cardiovascular risk. In fact, in patients at higher risk of cardiovascular events over a 10-year time horizon, even a similar relative risk reduction may translate in larger benefit when evaluated in absolute terms. Although the annual risk of CVD events can vary ≈10-fold in DM, the annual risk of gastrointestinal bleeding has been estimated to vary by ≤100-fold depending on factors such as age and history of prior peptic ulcer. Therefore, risk stratification is essential for identifying higher risk subjects who may derive a benefit from...
aspirin that offsets the increased risk of bleeding. To this aim, several risk stratification tools and statements have been introduced in the context of guidelines and task force reports.1,54,72

A ESC Working Group on Thrombosis position paper proposed a threshold risk level of ≥2 major cardiovascular events (death, MI, or stroke) per 100 patient-years above which aspirin is expected to produce more benefit than harm.65 This threshold is higher and therefore more conservative than those proposed by the ADA and the USPSTF.64,66 At variance with the HeartScore endorsed by the ESC,1 the calculator for the estimate of 10-year risk of CVD from the ACC and AHA includes DM as a prognostic risk factor.72 Based on the latter, the risk of 10-year CVD events in a patient with DM may vary significantly from 1% (ie, a 40-year-old female with no additional CVD risk factors) to >50% (ie, a 55-year-old male smoker with uncontrolled hypercholesterolemia and severe hypertension). The risk of CVD at 10 years is abated in case of optimal risk factor control, which is a mandatory step before considering aspirin initiation for primary CVD prevention. The 10-year risk of CVD events for white patients with DM or no DM on a background of optimal risk factors control (defined as total cholesterol 170 mg/dL, HDL-cholesterol 50 mg/dL, systolic blood pressure 110 mm Hg on treatment with antihypertensive drugs, and being a nonsmoker) is displayed in Figure 2. Based on these estimates and integrating recommendations from latest guidelines and consensus documents (Table 4), a practical algorithm for deciding when to initiate or consider aspirin for primary CVD across age categories is provided in Figure 3. Following this approach, recommendations for aspirin use are given for combinations of age and 10-year CVD risk. At variance with existing guidelines, we introduced a distinction between patients with and without family history of colorectal cancer. In the former, in fact, the threshold for initiating aspirin should be lower. Because the reduction in risk of colorectal cancer is apparent after at least 10 years of therapy, the initiation of aspirin may be less justified over 70 years if not otherwise justified by CVD risk considerations. Among patients with no family history of colorectal cancer, a general consensus exists across guidelines that those with between 50 and 59 years of age and 10-year CVD >10% should initiate aspirin (Table 4). This recommendation is less established for patients <50 years of age, those 50 to 59 years of age with <5% to 10% CVD risk, and patients <60 years. In all these categories, clinical judgment applies, which includes a balanced assessment of risk and benefits of aspirin therapy, and factors patients’ preference and their willingness to comply with aspirin therapy. Ultimately, any decision on aspirin initiation should be based on the underlying risk of bleeding. Patients at high risk of bleeding should not be offered aspirin therapy for primary prevention, with the possible exception of patients >50 and <70 years of age with a family history of colorectal cancer and a 10-year CVD risk >10%.

Ongoing Studies and Future Directions

Four randomized trials are currently ongoing to test the benefit of aspirin for primary prevention of CVD (Table 5). Three of them are double-blind (ARRIVE [Aspirin to Reduce Risk of Initial Vascular Event], NCT00501059; ASPREE [Aspirin in Reducing Events in the Elderly], NCT01038583; ASCEND [A Study of Cardiovascular Events in Diabetes], NCT00135226) and one (ACCEPT-D [Aspirin and Simvastatin Combination for Cardiovascular Event Prevention Trial in Diabetes], ISRCTN48110081) is open label. Similar to JPPP, all of these trials targeted patients at some risk of CVD events: with multiple co-

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>10-year CVD risk</th>
<th>Family history of CRC</th>
<th>HBR</th>
<th>no HBR</th>
<th>No ASA</th>
<th>No ASA</th>
<th>HBR</th>
<th>no HBR</th>
<th>No ASA</th>
<th>No ASA</th>
</tr>
</thead>
<tbody>
<tr>
<td><50</td>
<td><5%</td>
<td>HBR</td>
<td>No ASA</td>
<td>No ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>5–10%</td>
<td>HBR</td>
<td>No ASA</td>
<td>Initiate ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>5–10%</td>
<td>HBR</td>
<td>No ASA</td>
<td>Initiate ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>10–20%</td>
<td>Clinical judgment</td>
<td>Initiate ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60–69</td>
<td>10–20%</td>
<td>Clinical judgment</td>
<td>Initiate ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥70</td>
<td>≥20%</td>
<td>Clinical judgment</td>
<td>Clinical judgment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Risk stratification approach for aspirin use in primary prevention of cardiovascular disease for a patient with diabetes mellitus, on the background assumption of optimal management of other cardiovascular disease risk factors.

High bleeding risk (HBR) is defined as a history of bleeding without reversible causes and concurrent use of other medications that increase bleeding risk. Clinical judgment includes a balanced assessment of risk and benefits of aspirin therapy and factors patients’ preference and willingness to comply with aspirin for the subsequent 10 years. CRC indicates colorectal cancer; and CVD, cardiovascular disease.
Capsaicin-Containing Capsaicinoids in Young-Onset Alzheimer’s Disease: A Systematic Review and Meta-analysis

Yaling Zhang, Qinglai Liu, Zhe Tan, Chuang Liu, Zhenming Wang, Qiong Li, and Xiaoyu Liu

Abstract

Background: Young-onset Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder with unclear pathogenesis. Capsaicin, the active ingredient in chili, is known for its anti-inflammatory and neuroprotective effects. However, the effects of capsaicin-containing capsaicinoids on young-onset AD have not been systematically investigated.

Methods: We systematically searched PubMed, Embase, Cochrane Library, and Medline databases for relevant articles published from 2010 to 2020. The primary outcome was the improvement of cognitive function and memory. Secondary outcomes included assessment of global cognition and clinical symptoms of AD.

Results: A total of 12 clinical trials involving 1,283 participants met the inclusion criteria. Capsaicinoids were found to significantly improve cognitive function and memory in patients with young-onset AD compared to placebo (WMD = 1.16, 95% CI: 0.48 to 1.84, p = 0.001). Additionally, capsaicinoids significantly improved global cognition (WMD = 1.02, 95% CI: 0.59 to 1.45, p < 0.001) and reduced the severity of clinical symptoms (WMD = 0.74, 95% CI: 0.58 to 0.90, p < 0.001).

Conclusion: Capsaicin-containing capsaicinoids show promise in improving cognitive function, memory, and clinical symptoms in young-onset AD. Further research is needed to explore the long-term effects and mechanisms of action of capsaicinoids in AD.
consulting fee or honorarium from Amgen, Bayer, Sanofi, Eli Lilly, Daiichi-Sankyo, The Medicines Company, AstraZeneca, Merck, Abbott Vascular, Pfizer, and PLx Pharma; and participation in review activities from Johnson & Johnson and St. Jude Medical; and institutional payments for grants from Amgen, Glaxo-Smith-Kline, Eli Lilly, Daiichi-Sankyo, The Medicines Company, AstraZeneca, Janssen Pharmaceuticals, Inc., Osprey Medical, Inc., Novartis, CSL Behring, and Gilead.

AFFILIATIONS

From Ferrarotto Hospital, University of Catania, Catania, Italy (D.C.); and University of Florida College of Medicine–Jacksonville (D.J.A.).

FOOTNOTES

Received August 11, 2016; accepted August 30, 2016. Circulation is available at http://circ.ahajournals.org.

REFERENCES

23. View PDF

November 15, 2016
1592 November 15, 2016

diovasc Interv. 2011;4:180–187. doi: 10.1161/CIRCINTERVEN-
TIONS.110.960187.

effect of once- or twice-daily aspirin dosage in stable coronary ar

25. Spectre G, Arnetz L, Östenson CG, Brismar K, Li N, Hjemdahl P. Twice daily dosing of aspirin improves platelet inhibition in whole blood in patients with type 2 diabetes mellitus and micro- or macro-
vascular complications. Thromb Haemost. 2011;106:491–

26. Gurbel PA, Biden KE, DiChiara J, Newcomer J, Weng W, Neer-
TIONSNAHA.106.675587.

S, Hill L, Oulah A, Coleman RL, Holman RR. Randomized con-
trolled trial comparing impact on platelet reactivity of twice-daily
with once-daily aspirin in people with Type 2 diabetes. Diabet Med.

Project. Low-dose aspirin and vitamin E in people at cardio-

S, Hill L, Oulah A, Coleman RL, Holman RR. Randomized con-
trolled trial comparing impact on platelet reactivity of twice-daily
with once-daily aspirin in people with Type 2 diabetes. Diabet Med.

32. ETDRS Investigators. Aspirin effects on mortality and morbidity in

33. Côte R, Battista RN, Abramowicz M, Langlois Y, Bourque F,
Mackey A. Lack of effect of aspirin in asymptomatic patients with

34. Hansson L, Zanchetti A, Curruthers SG, Dahlöf B, Eklöf D, Julius S, Menard J, Rahn KH, Wedel H, Westerling S. Effects of
intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal

35. The Medical Research Council’s General Practice Research
Project. Thrombosis prevention trial: randomised trial of low-
intensity oral anticoagulation with warfarin and low-dose aspirin in

36. de Gaetano G, Collaborative Group of the Primary Prevention
Project. Low-dose aspirin and vitamin E in people at cardio-
vascular risk: a randomised trial in general practice: Collabora-

38. Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson
JE, Hennekens CH, Burge RN. A randomized trial of low-dose
aspirin in the primary prevention of cardiovascular disease in
NEJMoa050613.

39. Catalano M, Born G, Peto R. Prevention of serious vascular events by aspirin amongst patients with peripheral arterial disease: ran-

40. Erkan D, Harrison MJ, Levy R, Peterson M, Petri M, Sammari-
tano L, Unalp-Ariza A, Vilela V, Yazici Y, Lockshin MD. Aspi-
rin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled
trial in asymptomatic antiphospholipid antibody-positive indi-
art.22663.

41. Belch J, MacCuisie A, Campbell I, Cobbe S, Taylor R, Prescott
Group; Royal College of Physicians Edinburgh. The prevention of progression of arterial disease and diabetes (POPADAD) trial:
factorial randomised placebo controlled trial of aspirin and anti-
oxidants in patients with diabetes and asymptomatic peripheral
arterial disease. BMJ. 2008;337:a1840.

